
Tumult Analytics: a robust, easy-to-use,
scalable, and expressive framework for
differential privacy

— 01

1— Introduction and design goals

Tumult Analytics is an open-source framework for releasing
aggregate information from sensitive datasets with differential
privacy1 (DP). It supports many standard operations (e.g. filters, joins,
maps) and aggregations (e.g. counts, averages, quantiles). It is
currently used at institutions such as the IRS, the Wikimedia
Foundation, and the U.S. Census Bureau.

Tumult Analytics is designed to satisfy the following desiderata:

Robustness. An analyst with access to the raw data, who wants
to publish a differentially private version of it, can confidently use
the platform and obtain the desired privacy guarantees.

Ease of use. Any data scientist or engineer can successfully apply
DP to their own data, possibly after using the platform and its
documentation to learn about the necessary concepts. No expert-
level math knowledge or in-depth understanding of DP theory is
ever required.

Scalability and performance. Tumult Analytics can run DP
computations on arbitrarily-sized datasets. It uses computational
resources that are on the same order of magnitude as the non-
private version of the queries it evaluates.

Expressiveness. Tumult Analytics is sufficiently feature-rich to
power real-world use cases. Additionally, the underlying privacy
accounting framework is extensible enough to support the
addition of new data transformation operators, aggregate
functions, or even privacy notions and accounting methods,
without requiring deep design changes.

Figure 1. An annotated Tumult Analytics program that
computes the average income of all people older than 40 in
an input dataframe income_df, grouped by ZIP code.

A Session initialization: the sensitive data is
loaded and given a fixed privacy budget,
which bounds the maximum information
leakage. The interface guarantees that all the
outputs of future queries stay within this
budget (here, ε=1.5).

B Query definition: the user specifies which
query they want to run on the data, using an
interface similar to PySpark or Pandas.

C Query evaluation: the previously defined
query is executed on the data, using a portion
of the overall privacy budget (here, ε=0.2).

D Session inspection: the user can request how
much privacy budget is left for future queries.

A

B

C

D

session = Session.from_dataframe(

 dataframe=income_df,

 source_id= ,

 privacy_budget=PureDPBudget(),

)

query = (

 QueryBuilder ()

 .filter()

 .groupby(zip_codes)

 .average(, low= , high= **)

)

result = session.evaluate(

 query, PureDPBudget()

)

print(session.remaining_privacy_budget)

"income_data"

"income_data"
"age > 40"

"income"

1.5

0 10 6

0.2

© Copyright Tumult Labs 2022

1 Readers unfamiliar with differential privacy [1] can refer to [2, 3] for non-technical
introductions to this field, and [4, 5] for more in-depth surveys.

The library is built in two separate components.

Tumult Core is a privacy foundation, designed to be
modular and extensible. We present its design in
Section 2.

Tumult Analytics focuses on ease-of-use, by providing
a simpler interface on top of Tumult Core. We present
its interface in Section 3.

We then compare Tumult Analytics with other open-
source frameworks for differential privacy (Section 4).

— 02

Input data

metric & distance: add/remove at most one row

keep only rows in which column age is larger than 40

group by column zip_code

using specified group-by keys

clamp all values in column

income in [0, 10⁶]

count the number of rows

in each group sum column income in each group

add Laplace noise of scale

10 to all counts.

add Laplace noise of scale

10⁷ to all sums

join both tables on column zip_code,
divide noisy sums by noisy counts

Filtered data

metric & distance: add/remove at most one row

Grouped data

metric & distance: add/remove at most one row across

all groups

Clamped data

metric & distance: add/remove at most 10⁶ to the sum of

column income

Noisy Counts

metric & distance:

ε-indistiguishability, with ε = 0.1

Noisy Sums

metric & distance:

ε-indistiguishability, with ε =0.1

Output: noisy averages

metric & distance:

ε-indistiguishability, with ε = 0.2

Exact counts

metric & distance: add/remove at most one to the sum

of all counts

Exact sums

metric & distance: add/remove at most 10⁶ to the sum

of all sums

Grouped data

metric & distance:

add/remove at most one row across all groups

Composition operator

Splits the privacy budget in two

Figure 2. A simplified diagram outlining the steps taken by the data through Tumult
Core transformations, measurements and operators, to implement the query in
Figure 1. Each labeled arrow corresponds to a Core component. The actual series of
Core components to implement this query is more complex and incorporates some
additional optimizations.

Input & transformed data,

uses stability relations.

Differentially private data,

uses privacy relations.

— 03

2— Tumult Core
Tumult Core is the underlying framework that Tumult Analytics
relies on. It is a collection of components and composition
operators which allow users to implement complex differentially
private mechanisms. Tumult Core is where all the privacy-critical
logic lives: Tumult Analytics is only an interface to Tumult Core, and
the underlying framework provides end-to-end privacy guarantees.

The fundamental component of Tumult Core is called a
measurement. A measurement takes an input from some domain
and produces a randomized output. The privacy properties of the
measurement are captured by its input metric, a function defining
distances on its input domain, its output measure, a function
defining distances between probability distributions over the output
domain, and its privacy function, a function that takes a distance in
the input metric and returns a distance in the output measure. A
measurement M with privacy function f satisfies the following
property: for any pair of inputs x,y with distance at most d in the
input metric, the distributions M(x) and M(y) have distance at most
f(d) in the output measure.

This guarantee generalizes the usual DP guarantee in two ways.
First, it gives users flexibility to define alternative notions of
neighbors. In the usual definition of DP, neighbors are pairs of
datasets that differ in a single record: it prevents an adversary from
inferring information about a single record. However, we often want
a weaker guarantee – for example, on the precise location of some
person – or a stronger guarantee – for example, on all records
associated with some individual. Tumult Core measurements are
general enough to capture these examples, as well as other similar
variants (e.g. the N section in [6]).

Second, the privacy notion is abstracted in Tumult Core: the
framework is generic enough to cover not only differential privacy,
but variants of DP as well, and potentially entirely new privacy
notions. Today, in addition to DP, Tumult Core supports zero-
concentrated DP [7], and support for approximate DP [8] and
approximate zCDP is underway. Other notions like Rényi DP [9], f-DP
[10], and others (e.g. the Q section in [6]) could easily be supported.

In addition, Tumult Core also includes pre-processing components
called transformations. Transformations include typical data
processing operations (filters, maps, joins, …) and pre-processing
building blocks (clamping, truncation, …) useful for DP algorithms.
Transformations don’t have a privacy guarantee on their own.
Instead, they have a stability guarantee, which relates a distance in
the transformation’s input metric to a distance in its output metric.

A Tumult Core program uses composition operators to combine
transformations and measurements, and implement complex
algorithms. When multiple components are combined, the stability
or privacy function of the resulting component is inferred inductively.
This allows Tumult Core to build an end-to-end proof of the privacy
guarantee of an entire program, no matter how complex. Figure 2
presents a simplified example of how the Tumult Analytics query in
Figure 1 is implemented in Tumult Core. The generality of this
framework allows it to integrate various complex features, including:

Private Joins. Private joins are notoriously difficult [11, 12, 13, 14]:
their privacy analysis requires an understanding of how the
stability properties of two tables interact. Tumult Core handles
this by defining a new metric that defines distances on sets of
tables.

Complex neighboring notions. Some datasets can contain an
arbitrary number of records per user, which are keyed using a
user ID. Tumult Core handles this by defining a metric for tables
with privacy IDs, extending transformations to work with this
metric, and adding truncation operators to convert from this
metric to a metric quantifying the number of added/removed
rows. Other complex neighboring relations are also implemented.

Generalized parallel composition. When running DP
measurements on disjoint sets of records, we can reuse privacy
budget, since each record can appear in at most one of these sets
[15]. Generalized parallel composition generalizes this result to
non-disjoint subsets where a user’s contribution across subsets is
bounded. Tumult Core captures this contribution constraint in a
metric between lists of datasets.

Adaptivity. Tumult Core supports fully adaptive mechanisms:
when performing multiple measurements on the data, each
measurement can reuse the output of previous measurements,
including to determine how much privacy budget it consumes.

The variety of privacy definitions and accounting techniques can
easily be combined. Adding new notions of indistinguishability is as
simple as defining a new measurement that supports this notion, or
adding support to an existing measurement. Then, the new
measurement can be combined with existing transformations to
produce complex mechanisms using the new privacy guarantee.
Similarly, new transformations that support e.g. privacy IDs can be
combined with transformations that support more typical privacy
accounting. This way, new privacy accounting techniques can be used
only when necessary, and existing components can be reused where
it is not. This modularity makes it easy to extend Tumult Core with
new desired features.

— 04

3— Tumult Analytics
While Tumult Core is powerful, its extremely modular design can
make it challenging to use directly, especially for users who are not
experts in differential privacy. This is why we built Tumult Analytics
as an interface layer on top of Tumult Core. Tumult Analytics is
designed to be usable for non-experts, while still being capable of
addressing complex practical use cases. We first discuss its design
and why we believe it is approachable, using Figure 1 as an example.
Second, we present some current real-world use cases of Tumult
Analytics to give evidence of its power.

Computations in Tumult Analytics happen in the context of a Session,
which associates a fixed privacy guarantee with a dataset (possibly
containing multiple tables), and mediates the full analysis run on this
data. An analyst defines the privacy budget when they create a
Session, and they can query the Session for how much budget is
remaining at any time. They also define the privacy definition at
Session creation – both the indistinguishability definition (e.g. pure DP
or zCDP) and the unit of privacy (e.g. how many records a single user
contributes to in the original dataset). Session creation is the only
time the analyst must provide private data. All further interactions
between the analyst and the private data happen through the
Session, preventing inadvertent privacy violations that may result
from the analyst using the private data inappropriately. The syntax
for initializing a Session is demonstrated in the first block of Figure 1.

Next, the analyst can define queries. The query language attempts to
limit the amount of new concepts specific2 to DP that the user has to
learn and specify. This allows the analyst who is unfamiliar with DP to
specify the statistics they want to see, and defers the process of
constructing a private mechanism that approximates the answers to
these queries to the Tumult Analytics engine. This query construction
process uses a fluent interface and generally attempts to resemble
the pandas [16] and PySpark [17] query interfaces, which users might
already be familiar with. This syntax is shown on the second block of
Figure 1.

Once a query has been defined, the analyst evaluates it to produce a
noisy answer. This consumes privacy budget: the analyst must
specify how much budget to use the query as in the third block of
Figure 1. When the analyst evaluates a query, Tumult Analytics
compiles it into a Tumult Core measurement that answers the query
using the given privacy budget, and returns the answer to the user.

Because Tumult Core supports fully adaptive composition, the entire
process is interactive: the user can process the query answers and
add complex control flow (conditional statements, loops, etc.) to
choose which queries to evaluate next. In the fourth block of Figure 1,

the user asks the Session how much budget it has left. The answer is
greater than 0, so the user can run further queries.

To help users ramp up with DP, Tumult Analytics also comes with
extensive documentation [18] and multiple tutorials [19] explaining
how to perform common DP analysis tasks.

Ease-of-use is only valuable if users can actually solve their real-
world data analysis problems. We believe that Tumult Analytics is
sufficiently powerful for such complex tasks. The features discussed
in Section 2 are either available or currently being added, including
private joins, multiple privacy definitions (pure differential privacy
and zCDP), and support for privacy identifiers. Tumult Analytics has
already been deployed in practice, either in production or as a
prototype in the following cases.

The U.S. Census Bureau is using Tumult Analytics for the Detailed
DHC-A, Detailed DHC-B, and S-DHC data releases, as part of the
2020 Decennial Census. These use cases rely on several complex
features outlined in Section 2: zCDP accounting, adaptivity, and
tight privacy accounting with generalized parallel composition.

The Wikimedia Foundation uses it to publish country-level
statistics about the number of visitors to each Wikipedia page on
each day. This use case relies on the complex privacy notion
feature mentioned in Section 2.

The U.S. Internal Revenue Service relies on Tumult Analytics to
release college graduate income summaries and power the
College Scorecard website [20].

The variety of privacy definitions and accounting techniques can
easily be combined. Adding new notions of indistinguishability is as
simple as defining a new measurement that supports this notion, or
adding support to an existing measurement. Then, the new
measurement can be combined with existing transformations to
produce complex mechanisms using the new privacy guarantee.
Similarly, new transformations that support e.g. privacy IDs can be
combined with transformations that support more typical privacy
accounting. This way, new privacy accounting techniques can be used
only when necessary, and existing components can be reused where
it is not. This modularity makes it easy to extend Tumult Core with
new desired features.

2 Some, like noise type or magnitude, are either optional or entirely hidden. Others, like
clamping bounds or explicit group-by keys, are required today, but work is currently
underway to remove the need for users to understand and specify these.

— 05

complex program from its simple components, SmartNoise SQL
cannot. This architectural choice also means that SmartNoise SQL
cannot directly benefit from OpenDP’s extensibility.

Diffprivlib [31] is a library of DP mechanisms written in Python. It
relies on NumPy [32, 33] for all the underlying computations, which
has the same scalability limits as OpenDP, and also creates security
vulnerabilities [34]. diffprivlib is also not built on an extensible
framework like OpenDP or Tumult Core; it relies exclusively on
approximate DP, and can only protect individual records in a single
table.

Other systems have been proposed in the literature, and proofs of
concept for these systems have been published on open-source
platforms: this is the case for Chorus [35, 36] or PINQ [37, 15]. Since
these libraries are prototypes that are not actively maintained, we do
not extensively compare Tumult Analytics to them.

4— Comparison to existing systems

Tumult Analytics is not the first open-source framework for
differential privacy. In this section, we list other libraries, and explain
how Tumult Analytics compares to them.

GoogleDP [21] is a suite of tools including “building block” libraries and
higher-level frameworks (Privacy on Beam [22] written in Go, and an
extension to ZetaSQL [23, 24]). Besides the obvious language
difference (Tumult Analytics is a Python library), a main difference
between Tumult Core and the GoogleDP building block libraries is
that the latter do not provide an end-to-end guarantee: higher-level
frameworks have to use them correctly and implement privacy-
critical operations like privacy accounting or contribution bounding
directly. Another fundamental difference is extensibility. GoogleDP
tools are designed to support a specific class of queries [24], and use
approximate DP for privacy accounting. Extending them to support
some of Tumult Analytics’ features (like zCDP accounting, parallel
composition, or private joins without privacy IDs) would require deep
changes throughout the framework and the building block libraries.
By comparison, such changes were added to Tumult Core and
Tumult Analytics in a matter of weeks when the need arose.

PipelineDP [25] is a Python framework built atop the GoogleDP
building block libraries. It follows roughly the same design as the two
GoogleDP frameworks, so the comparison from the previous
paragraph applies here as well. One major difference is that
PipelineDP’s design is backend-agnostic: it can run on multiple data
processing frameworks, like Beam, Spark, or locally. This is an
advantage over Tumult Analytics, which fully relies on Spark.

OpenDP3 [26] is inspired by a programming framework proposed by
[29]. This framework was also the inspiration for Tumult Core, so
there are similarities between both projects. Besides feature-richness
(the features mentioned in Section 2 do not exist yet in OpenDP), a
major difference between the two projects is scalability: all
components in OpenDP are written in Rust, so transformations like
group-by operations and aggregations assume that all the data fits in
memory on a single machine. This makes it unsuitable for large-scale
data processing use cases.

SmartNoise SQL [30] is a high-level framework to run differentially
private SQL queries. It uses some primitives from OpenDP, like noise
addition, but (maybe due to the scalability limitations mentioned
above) uses the SQL backend directly for most data processing
operations. As a result, most of the privacy-critical logic is
implemented directly in SmartNoise SQL instead of using the
underlying framework as was originally envisioned [29]. This means
that even though OpenDP can generate a proof of privacy for a

3 The software library [26], not to be confused with the larger project with the same name
[27]. Another software library under the same project is SmartNoise Core [28], which is an
older version of OpenDP and is now deprecated.

— 06

References
[1] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in
private data analysis,” in Theory of cryptography conference. Springer, 2006, pp.
265–284.

[2] A. Wood, M. Altman, A. Bembenek, M. Bun, M. Gaboardi, J. Honaker, K. Nissim, D. R.
O’Brien, T. Steinke, and S. Vadhan, “Differential privacy: A primer for a non-technical
audience,” Vand. J. Ent. & Tech. L., vol. 21, p. 209, 2018.

[3] D. Desfontaines, “A friendly, non-technical introduction to differential privacy,”
https://desfontain.es/privacy/friendly-intro-to-differential-privacy.html, 09 2021, Ted
is writing things (personal blog).

[4] C. Dwork, A. Roth et al., “The algorithmic foundations of differential privacy,”
Foundations and Trends® in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–
407, 2014.

[5] S. Vadhan, “The complexity of differential privacy,” in Tutorials on the Foundations
of Cryptography. Springer, 2017, pp. 347–450.

[6] D. Desfontaines and B. Pejó, “SoK: differential privacies,” Proceedings on privacy
enhancing technologies, vol. 2020, no. 2, pp. 288–313, 2020.

[7] M. Bun and T. Steinke, “Concentrated differential privacy: Simplifications,
extensions, and lower bounds,” in Theory of Cryptography Conference. Springer,
2016, pp. 635–658.

[8] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our data, ourselves:
Privacy via distributed noise generation,” in Annual international conference on the
theory and applications of cryptographic techniques. Springer, 2006, pp. 486–503.

[9] I. Mironov, “Rényi differential privacy,” in 2017 IEEE 30th computer security
foundations symposium (CSF). IEEE, 2017, pp. 263–275.

[10] J. Dong, A. Roth, and W. J. Su, “Gaussian differential privacy,” arXiv preprint
arXiv:1905.02383, 2019.

[11] I. Kotsogiannis, Y. Tao, X. He, M. Fanaeepour, A. Machanavajjhala, M. Hay, and G.
Miklau, “PrivateSQL: a differentially private SQL query engine,” Proceedings of the
VLDB Endowment, vol. 12, no. 11, pp. 1371–1384, 2019.

[12] W. Dong, J. Fang, K. Yi, Y. Tao, and A. Machanavajjhala, “R2T: Instance-optimal
truncation for differentially private query evaluation with foreign keys,” in Proc. ACM
SIGMOD International Conference on Management of Data, 2022.

[13] N. Johnson, J. P. Near, and D. Song, “Towards practical differential privacy for sql
queries, ”Proceedings of the VLDB Endowment, vol. 11, no. 5, pp. 526–539, 2018.

[14] Y. Tao, X. He, A. Machanavajjhala, and S. Roy, “Computing local sensitivities of
counting queries with joins,” in Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, 2020, pp. 479–494.

[15] F. D. McSherry, “Privacy Integrated Queries: an extensible platform for privacy-
preserving data analysis,” in Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, 2009, pp. 19–30.

[16] The pandas development team, “pandas-dev/pandas: Pandas,” Feb. 2020.
[Online]. Available: https://doi.org/10.5281/zenodo.3509134

[17] T. P. development team, “PySpark.” [Online]. Available: https://spark.apache.org/
docs/latest/api/python/

[18] “Tumult Analytics documentation.” [Online]. Available: https://docs.tmlt.dev/
analytics/latest/

[19] “Tumult Analytics tutorials.” [Online]. Available: https://docs.tmlt.dev/analytics/
latest/tutorials

[20] “College Scorecard,” https://collegescorecard.ed.gov/, accessed: 2022-11-23.

[21] “Google’s differential privacy libraries.” [Online]. Available: https://github.com/
google/differential-privacy

[22] “Privacy on Beam.” [Online]. Available: https://github.com/google/differential-
privacy/tree/main/privacy-on-beam

[23] “ZetaSQL differential privacy extension.” [Online]. Available: https://github.com/
google/differential-privacy/tree/main/examples/zetasql

[24] R. J. Wilson, C. Y. Zhang, W. Lam, D. Desfontaines, D. Simmons-Marengo, and B.
Gipson, “Differentially private SQL with bounded user contribution,” Proceedings on
Privacy Enhancing Technologies, vol. 2, pp. 230–250, 2020.

[25] “PipelineDP,” accessed: 2022-11-23. [Online]. Available: https://pipelinedp.io/

[26] “OpenDP,” accessed: 2022-11-23. [Online]. Available: https://github.com/opendp/
opendp

[27] “OpenDP,” accessed: 2022-11-23. [Online]. Available: https://opendp.org/

[28] “SmartNoise Core,” accessed: 2022-11-23. [Online]. Available: https://github.com/
opendp/smartnoise-core

[29] M. Gaboardi, M. Hay, and S. Vadhan, “A programming framework for OpenDP,”
Manuscript, May, 2020.

[30] “SmartNoise SQL,” accessed: 2022-11-23. [Online]. Available: https://github.com/
opendp/smartnoise-sdk/tree/main/sql

[31] “diffprivlib,” accessed: 2022-11-23. [Online]. Available: https://github.com/IBM/
differential-privacy-library

[32] “NumPy,” accessed: 2022-11-23. [Online]. Available: https://numpy.org/

[33] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D.
Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H.
van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-
Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E.
Oliphant, “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362,
Sep. 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2649-2

[34] S. Haney, D. Desfontaines, L. Hartman, R. Shrestha, and M. Hay, “Precision-based
attacks and interval refining: how to break, then fix, differential privacy on finite
computers,” arXiv preprint arXiv:2207.13793, 2022.

[35] “Chorus,” accessed: 2022-11-23. [Online]. Available: https://github.com/uvm-
plaid/chorus

[36] N. Johnson, J. P. Near, J. M. Hellerstein, and D. Song, “Chorus: a programming
framework for building scalable differential privacy mechanisms,” in 2020 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 2020, pp. 535–551.

[37] “Privacy Integrated Queries, v0.1.1,” accessed: 2022-11-23. [Online]. Available:
https://github.com/LLGemini/PINQ

https://desfontain.es/privacy/friendly-intro-to-differential-privacy.html
https://doi.org/10.5281/zenodo.3509134
https://spark.apache.org/docs/latest/api/python/
https://spark.apache.org/docs/latest/api/python/
https://docs.tmlt.dev/analytics/latest/
https://docs.tmlt.dev/analytics/latest/
https://docs.tmlt.dev/analytics/latest/tutorials
https://docs.tmlt.dev/analytics/latest/tutorials
https://collegescorecard.ed.gov/, accessed: 2022-11-23
https://github.com/google/differential-privacy
https://github.com/google/differential-privacy
https://github.com/google/differential-privacy/tree/main/privacy-on-beam
https://github.com/google/differential-privacy/tree/main/privacy-on-beam
https://github.com/google/differential-privacy/tree/main/examples/zetasql
https://github.com/google/differential-privacy/tree/main/examples/zetasql
https://pipelinedp.io/
https://github.com/opendp/opendp
https://github.com/opendp/opendp
https://github.com/opendp/smartnoise-core
https://github.com/opendp/smartnoise-core
https://github.com/opendp/smartnoise-sdk/tree/main/sql
https://github.com/opendp/smartnoise-sdk/tree/main/sql
https://github.com/IBM/differential-privacy-library
https://github.com/IBM/differential-privacy-library
https://numpy.org/
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/uvm-plaid/chorus
https://github.com/uvm-plaid/chorus
https://github.com/LLGemini/PINQ

