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1— Introduction and design goals

Tumult Analytics is an open-source framework for releasing 
aggregate information from sensitive datasets with differential 
privacy1 (DP). It supports many standard operations (e.g. filters, joins, 
maps) and aggregations (e.g. counts, averages, quantiles). It is 
currently used at institutions such as the IRS, the Wikimedia 
Foundation, and the U.S. Census Bureau.

Tumult Analytics is designed to satisfy the following desiderata:

Robustness. An analyst with access to the raw data, who wants 
to publish a differentially private version of it, can confidently use 
the platform and obtain the desired privacy guarantees.

Ease of use. Any data scientist or engineer can successfully apply 
DP to their own data, possibly after using the platform and its 
documentation to learn about the necessary concepts. No expert-
level math knowledge or in-depth understanding of DP theory is 
ever required.

Scalability and performance. Tumult Analytics can run DP 
computations on arbitrarily-sized datasets. It uses computational 
resources that are on the same order of magnitude as the non-
private version of the queries it evaluates.

Expressiveness. Tumult Analytics is sufficiently feature-rich to 
power real-world use cases. Additionally, the underlying privacy 
accounting framework is extensible enough to support the 
addition of new data transformation operators, aggregate 
functions, or even privacy notions and accounting methods, 
without requiring deep design changes.

Figure 1. An annotated Tumult Analytics program that 
computes the average income of all people older than 40 in 
an input dataframe income_df, grouped by ZIP code.

A Session initialization: the sensitive data is 
loaded and given a fixed privacy budget, 
which bounds the maximum information 
leakage. The interface guarantees that all the 
outputs of future queries stay within this 
budget (here, ε=1.5).

B Query definition: the user specifies which 
query they want to run on the data, using an 
interface similar to PySpark or Pandas.

C Query evaluation: the previously defined 
query is executed on the data, using a portion 
of the overall privacy budget (here, ε=0.2).

D Session inspection: the user can request how 
much privacy budget is left for future queries.

A
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session = Session.from_dataframe(

       dataframe=income_df,

       source_id= ,     

       privacy_budget=PureDPBudget( ),

)



query = (

       QueryBuilder ( )

      .filter( )

      .groupby(zip_codes)

      .average( , low= , high= ** )

)



result = session.evaluate(

       query, PureDPBudget( )

)

print(session.remaining_privacy_budget)
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1 Readers unfamiliar with differential privacy [1] can refer to [2, 3] for non-technical 
introductions to this field, and [4, 5] for more in-depth surveys.

The library is built in two separate components.

Tumult Core is a privacy foundation, designed to be 
modular and extensible. We present its design in 
Section 2.

Tumult Analytics focuses on ease-of-use, by providing 
a simpler interface on top of Tumult Core. We present 
its interface in Section 3.

We then compare Tumult Analytics with other open-
source frameworks for differential privacy (Section 4).
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Input data

metric & distance: add/remove at most one row

keep only rows in which column age is larger than 40

group by column zip_code

using specified group-by keys

clamp all values in column 

income in [0, 10⁶]

count the number of rows

in each group sum column income in each group

add Laplace noise of scale

10 to all counts.

add Laplace noise of scale

10⁷ to all sums

join both tables on column zip_code, 
divide noisy sums by noisy counts

Filtered data

metric & distance: add/remove at most one row

Grouped data

metric & distance: add/remove at most one row across 

all groups

Clamped data

metric & distance: add/remove at most 10⁶ to the sum of 

column income

Noisy Counts

metric & distance:


ε-indistiguishability, with ε = 0.1

Noisy Sums

metric & distance:


ε-indistiguishability, with ε =0.1

Output: noisy averages

metric & distance:


ε-indistiguishability, with ε = 0.2

Exact counts

metric & distance: add/remove at most one to the sum 

of all counts

Exact sums

metric & distance: add/remove at most 10⁶ to the sum 

of all sums

Grouped data

metric & distance:


add/remove at most one row across all groups

Composition operator

Splits the privacy budget in two

Figure 2. A simplified diagram outlining the steps taken by the data through Tumult 
Core transformations, measurements and operators, to implement the query in 
Figure 1. Each labeled arrow corresponds to a Core component. The actual series of 
Core components to implement this query is more complex and incorporates some 
additional optimizations.

Input & transformed data,

uses stability relations.

Differentially private data,

uses privacy relations.
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2— Tumult Core
Tumult Core is the underlying framework that Tumult Analytics 
relies on. It is a collection of components and composition 
operators which allow users to implement complex differentially 
private mechanisms. Tumult Core is where all the privacy-critical 
logic lives: Tumult Analytics is only an interface to Tumult Core, and 
the underlying framework provides end-to-end privacy guarantees.



The fundamental component of Tumult Core is called a 
measurement. A measurement takes an input from some domain 
and produces a randomized output. The privacy properties of the 
measurement are captured by its input metric, a function defining 
distances on its input domain, its output measure, a function 
defining distances between probability distributions over the output 
domain, and its privacy function, a function that takes a distance in 
the input metric and returns a distance in the output measure. A 
measurement M with privacy function f satisfies the following 
property: for any pair of inputs x,y with distance at most d in the 
input metric, the distributions M(x) and M(y) have distance at most 
f(d) in the output measure.



This guarantee generalizes the usual DP guarantee in two ways. 
First, it gives users flexibility to define alternative notions of 
neighbors. In the usual definition of DP, neighbors are pairs of 
datasets that differ in a single record: it prevents an adversary from 
inferring information about a single record. However, we often want 
a weaker guarantee – for example, on the precise location of some 
person – or a stronger guarantee – for example, on all records 
associated with some individual. Tumult Core measurements are 
general enough to capture these examples, as well as other similar 
variants (e.g. the N section in [6]).



Second, the privacy notion is abstracted in Tumult Core: the 
framework is generic enough to cover not only differential privacy, 
but variants of DP as well, and potentially entirely new privacy 
notions. Today, in addition to DP, Tumult Core supports zero-
concentrated DP [7], and support for approximate DP [8] and 
approximate zCDP is underway. Other notions like Rényi DP [9], f-DP 
[10], and others (e.g. the Q section in [6]) could easily be supported.



In addition, Tumult Core also includes pre-processing components 
called transformations. Transformations include typical data 
processing operations (filters, maps, joins, …) and pre-processing 
building blocks (clamping, truncation, …) useful for DP algorithms. 
Transformations don’t have a privacy guarantee on their own. 
Instead, they have a stability guarantee, which relates a distance in 
the transformation’s input metric to a distance in its output metric.

A Tumult Core program uses composition operators to combine 
transformations and measurements, and implement complex 
algorithms. When multiple components are combined, the stability 
or privacy function of the resulting component is inferred inductively. 
This allows Tumult Core to build an end-to-end proof of the privacy 
guarantee of an entire program, no matter how complex. Figure 2 
presents a simplified example of how the Tumult Analytics query in 
Figure 1 is implemented in Tumult Core. The generality of this 
framework allows it to integrate various complex features, including:

Private Joins. Private joins are notoriously difficult [11, 12, 13, 14]: 
their privacy analysis requires an understanding of how the 
stability properties of two tables interact. Tumult Core handles 
this by defining a new metric that defines distances on sets of 
tables.

Complex neighboring notions. Some datasets can contain an 
arbitrary number of records per user, which are keyed using a 
user ID. Tumult Core handles this by defining a metric for tables 
with privacy IDs, extending transformations to work with this 
metric, and adding truncation operators to convert from this 
metric to a metric quantifying the number of added/removed 
rows. Other complex neighboring relations are also implemented.

Generalized parallel composition. When running DP 
measurements on disjoint sets of records, we can reuse privacy 
budget, since each record can appear in at most one of these sets 
[15]. Generalized parallel composition generalizes this result to 
non-disjoint subsets where a user’s contribution across subsets is 
bounded. Tumult Core captures this contribution constraint in a 
metric between lists of datasets.

Adaptivity. Tumult Core supports fully adaptive mechanisms: 
when performing multiple measurements on the data, each 
measurement can reuse the output of previous measurements, 
including to determine how much privacy budget it consumes.

The variety of privacy definitions and accounting techniques can 
easily be combined. Adding new notions of indistinguishability is as 
simple as defining a new measurement that supports this notion, or 
adding support to an existing measurement. Then, the new 
measurement can be combined with existing transformations to 
produce complex mechanisms using the new privacy guarantee. 
Similarly, new transformations that support e.g. privacy IDs can be 
combined with transformations that support more typical privacy 
accounting. This way, new privacy accounting techniques can be used 
only when necessary, and existing components can be reused where 
it is not. This modularity makes it easy to extend Tumult Core with 
new desired features.



— 04

3— Tumult Analytics
While Tumult Core is powerful, its extremely modular design can 
make it challenging to use directly, especially for users who are not 
experts in differential privacy. This is why we built Tumult Analytics 
as an interface layer on top of Tumult Core. Tumult Analytics is 
designed to be usable for non-experts, while still being capable of 
addressing complex practical use cases. We first discuss its design 
and why we believe it is approachable, using Figure 1 as an example. 
Second, we present some current real-world use cases of Tumult 
Analytics to give evidence of its power.



Computations in Tumult Analytics happen in the context of a Session, 
which associates a fixed privacy guarantee with a dataset (possibly 
containing multiple tables), and mediates the full analysis run on this 
data. An analyst defines the privacy budget when they create a 
Session, and they can query the Session for how much budget is 
remaining at any time. They also define the privacy definition at 
Session creation – both the indistinguishability definition (e.g. pure DP 
or zCDP) and the unit of privacy (e.g. how many records a single user 
contributes to in the original dataset). Session creation is the only 
time the analyst must provide private data. All further interactions 
between the analyst and the private data happen through the 
Session, preventing inadvertent privacy violations that may result 
from the analyst using the private data inappropriately. The syntax 
for initializing a Session is demonstrated in the first block of Figure 1.



Next, the analyst can define queries. The query language attempts to 
limit the amount of new concepts specific2 to DP that the user has to 
learn and specify. This allows the analyst who is unfamiliar with DP to 
specify the statistics they want to see, and defers the process of 
constructing a private mechanism that approximates the answers to 
these queries to the Tumult Analytics engine. This query construction 
process uses a fluent interface and generally attempts to resemble 
the pandas [16] and PySpark [17] query interfaces, which users might 
already be familiar with. This syntax is shown on the second block of 
Figure 1.



Once a query has been defined, the analyst evaluates it to produce a 
noisy answer. This consumes privacy budget: the analyst must 
specify how much budget to use the query as in the third block of 
Figure 1. When the analyst evaluates a query, Tumult Analytics 
compiles it into a Tumult Core measurement that answers the query 
using the given privacy budget, and returns the answer to the user.



Because Tumult Core supports fully adaptive composition, the entire 
process is interactive: the user can process the query answers and 
add complex control flow (conditional statements, loops, etc.) to 
choose which queries to evaluate next. In the fourth block of Figure 1,

the user asks the Session how much budget it has left. The answer is 
greater than 0, so the user can run further queries.



To help users ramp up with DP, Tumult Analytics also comes with 
extensive documentation [18] and multiple tutorials [19] explaining 
how to perform common DP analysis tasks.



Ease-of-use is only valuable if users can actually solve their real-
world data analysis problems. We believe that Tumult Analytics is 
sufficiently powerful for such complex tasks. The features discussed 
in Section 2 are either available or currently being added, including 
private joins, multiple privacy definitions (pure differential privacy 
and zCDP), and support for privacy identifiers. Tumult Analytics has 
already been deployed in practice, either in production or as a 
prototype in the following cases.

The U.S. Census Bureau is using Tumult Analytics for the Detailed 
DHC-A, Detailed DHC-B, and S-DHC data releases, as part of the 
2020 Decennial Census. These use cases rely on several complex 
features outlined in Section 2: zCDP accounting, adaptivity, and 
tight privacy accounting with generalized parallel composition.

The Wikimedia Foundation uses it to publish country-level 
statistics about the number of visitors to each Wikipedia page on 
each day. This use case relies on the complex privacy notion 
feature mentioned in Section 2.

The U.S. Internal Revenue Service relies on Tumult Analytics to 
release college graduate income summaries and power the 
College Scorecard website [20].

The variety of privacy definitions and accounting techniques can 
easily be combined. Adding new notions of indistinguishability is as 
simple as defining a new measurement that supports this notion, or 
adding support to an existing measurement. Then, the new 
measurement can be combined with existing transformations to 
produce complex mechanisms using the new privacy guarantee. 
Similarly, new transformations that support e.g. privacy IDs can be 
combined with transformations that support more typical privacy 
accounting. This way, new privacy accounting techniques can be used 
only when necessary, and existing components can be reused where 
it is not. This modularity makes it easy to extend Tumult Core with 
new desired features.

2 Some, like noise type or magnitude, are either optional or entirely hidden. Others, like 
clamping bounds or explicit group-by keys, are required today, but work is currently 
underway to remove the need for users to understand and specify these.
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complex program from its simple components, SmartNoise SQL 
cannot. This architectural choice also means that SmartNoise SQL 
cannot directly benefit from OpenDP’s extensibility.



Diffprivlib [31] is a library of DP mechanisms written in Python. It 
relies on NumPy [32, 33] for all the underlying computations, which 
has the same scalability limits as OpenDP, and also creates security 
vulnerabilities [34]. diffprivlib is also not built on an extensible 
framework like OpenDP or Tumult Core; it relies exclusively on 
approximate DP, and can only protect individual records in a single 
table.



Other systems have been proposed in the literature, and proofs of 
concept for these systems have been published on open-source 
platforms: this is the case for Chorus [35, 36] or PINQ [37, 15]. Since 
these libraries are prototypes that are not actively maintained, we do 
not extensively compare Tumult Analytics to them.

4— Comparison to existing systems

Tumult Analytics is not the first open-source framework for 
differential privacy. In this section, we list other libraries, and explain 
how Tumult Analytics compares to them.



GoogleDP [21] is a suite of tools including “building block” libraries and 
higher-level frameworks (Privacy on Beam [22] written in Go, and an 
extension to ZetaSQL [23, 24]). Besides the obvious language 
difference (Tumult Analytics is a Python library), a main difference 
between Tumult Core and the GoogleDP building block libraries is 
that the latter do not provide an end-to-end guarantee: higher-level 
frameworks have to use them correctly and implement privacy-
critical operations like privacy accounting or contribution bounding 
directly. Another fundamental difference is extensibility. GoogleDP 
tools are designed to support a specific class of queries [24], and use 
approximate DP for privacy accounting. Extending them to support 
some of Tumult Analytics’ features (like zCDP accounting, parallel 
composition, or private joins without privacy IDs) would require deep 
changes throughout the framework and the building block libraries. 
By comparison, such changes were added to Tumult Core and 
Tumult Analytics in a matter of weeks when the need arose.



PipelineDP [25] is a Python framework built atop the GoogleDP 
building block libraries. It follows roughly the same design as the two 
GoogleDP frameworks, so the comparison from the previous 
paragraph applies here as well. One major difference is that 
PipelineDP’s design is backend-agnostic: it can run on multiple data 
processing frameworks, like Beam, Spark, or locally. This is an 
advantage over Tumult Analytics, which fully relies on Spark.



OpenDP3 [26] is inspired by a programming framework proposed by 
[29]. This framework was also the inspiration for Tumult Core, so 
there are similarities between both projects. Besides feature-richness 
(the features mentioned in Section 2 do not exist yet in OpenDP), a 
major difference between the two projects is scalability: all 
components in OpenDP are written in Rust, so transformations like 
group-by operations and aggregations assume that all the data fits in 
memory on a single machine. This makes it unsuitable for large-scale 
data processing use cases.



SmartNoise SQL [30] is a high-level framework to run differentially 
private SQL queries. It uses some primitives from OpenDP, like noise 
addition, but (maybe due to the scalability limitations mentioned 
above) uses the SQL backend directly for most data processing 
operations. As a result, most of the privacy-critical logic is 
implemented directly in SmartNoise SQL instead of using the 
underlying framework as was originally envisioned [29]. This means 
that even though OpenDP can generate a proof of privacy for a

3 The software library [26], not to be confused with the larger project with the same name 
[27]. Another software library under the same project is SmartNoise Core [28], which is an 
older version of OpenDP and is now deprecated.
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